

CONSTRUCTED WETLANDS: An Overview of the Technology

Presentation For:

Peconic River Remedial Alternatives Workshop

December 12 & 13, 2000

Presented by:

Walter H. Eifert Principal Hydrologist

ROUX ASSOCIATES, INC.

Environmental Services and Management

What Is A Constructed Wetland?

Definition:

A designed and man-made complex of:

Water That Simulates Natural Wetlands

Present Treatment Applications

- Municipal and Industrial Wastewaters
- Acid Mine Drainage
- Landfill Leachates
- Agricultural Runoff
- Urban Stormwater

Contaminant Removal Mechanisms: Multiple Processes At Work

Specific Removal Processes

PHYSICAL

Sedimentation

Filtration

Adsorption

Volatilization

CHEMICAL

Precipitation

Adsorption

Hydrolysis

Oxidation/Reduction

BIOLOGICAL

Bacterial Metabolism

Plant Metabolism

Plant Absorption

Natural Die-Off

Types of Contaminants Removed

- Organic Substances
- Nutrients
- Heavy Metals
- Suspended and Colloidal Materials
- Pathogens

Types of Constructed Wetlands

- 1 Free Water Surface Systems

 Marsh Pond Meadow Sequence
- **Subsurface Flow Systems**

Engineered cells containing gravel, soil and.or sand treatment media

Free Water Surface Wetland: Marsh Component

Free Water Surface Wetland: Open Water Pond

Free Water Surface Wetland: Meadow

Subsurface Flow Systems

CASE STUDIES

BASF, Williamsburg, Virginia City of Glen Cove, New York

Designed and Currently Operate BASF, Williamsburg CW

- COC's: Zinc, Iron, and Acidity
- Typical Zinc influent: 800 mg/L
- Typical Zinc effluent: 0.10 to 1.5 mg/L
- Treatment Target 2.0 mg/L
- Performance to Date: ≥ 99.9%
- Flow range: 125,000 to 150,000 gpd
- Completed construction January, 1999

BASF, Williamsburg Pre-Construction Photo

0 400 FT

BASF, Williamsburg CW Site Plan

0 400 FT

City of Glen Cove, New York Stormwater Treatment Constructed Wetlands

COCs: TSS, Nitrogen, Lead, and Copper

Typical Nitrogen Influent: 4.24 mg/l

Projected Nitrogen Removal: 45 lbs/day

Treatment Design Flow Rate: Base Flow = 8 cfs

First Flush = 25 cfs

First Flush Hydraulic Retention Time: 12 Hours

Hydraulic Design Flow Rate: 450 cfs

Construction Completion Expected: April 2001

300 FT

PRECONSTRUCTION Debris Waste and Iron Stained Seep Area

PRECONSTRUCTION Severely Eroded Hillside

UNDER CONSTRUCTION Stop Log Structure and Diversion Channel

POST- CONSTRUCTION Completed Micropool

Advantages of Constructed Wetland Treatment Systems

- Inexpensive to construct
- Very low operation and maintenance costs
- Easy to maintain
- Can be designed to provide habitat enhancements and contaminant mitigation
- Tolerant of fluctuating hydraulic and contaminant loading rates
- Provide increased educational opportunities

Potential Disadvantages of Constructed Wetland Treatment Systems

- Require relatively large land areas
- Lack precise design criteria
- Potential vector control concerns